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ABSTRACT 

A general model describing the evolution (expansion and contraction) of a zone migrating in a non-uniform (coordinate-dependent) 
chromatographic medium was developed. Equations for the spatial and temporal rates of change of variance of a zone were derived 
starting from the basic principle of mass balance in convective diffusion in a one-dimensional non-uniform medium. Also, the dis- 
tinction between local and average values of many important quantities describing the evolution of a zone in a non-uniform medium 
such as velocity of a zone, plate height, chromatographic efficiency and was re-examined. It was shown that under certain conditions 
covering all practically important cases the chromatographic efficiency of a non-uniform medium cannot exceed that of a corresponding 
uniform medium. The study also produced unexpected results. It became apparent that a gradient of diffusivity affected the velocity of 
migration of an analyte in a column, and part of dispersion-related zone broadening could be recovered. It also became apparent that 
previous approaches for dealing with non-uniformity depended on unknown implicit conditions. Typically, these conditions were not 
satisfied in the cases considered. For example, many classical results deemed to be exact values must be viewed only as approximations. 
Hence, the known pressure correction factor for plate height in capillary gas chromatography with ideal gases is only an approximation 
to a still unknown correct value. 

INTRODUCTION 

Existing chromatographic theory has done an 
admirable job in predicting the performance of 
capillary columns under uniform and near uniform 
conditions. However, situations in which chroma- 
tographic conditions are not uniform throughout 
the column have been only partially addressed [e.g., 
the effect of large pressure drops in gas chroma- 
tography (GC) with ideal carrier gases has been 
explained]. The general approach has been to de- 
velop theory for uniform conditions, then apply 
correction factors to account for non-uniformity. 
Such an approach is inherently limited to relatively 
small deviations from non-uniformity. In this paper, 
a general expression is developed which directly 
describes zone broadening under time-invariant, 
non-uniform conditions (zones traversing standing 
gradients). The intent is to lay a foundation for 
further work in which the effects of simultaneous 

time-variant and spatially non-uniform conditions 
on peak shape can be described. 

Physical conditions often change from the inlet to 
the outlet of the column. A typical example of such 
a non-uniform (coordinate-dependent) chromato- 
graphic medium is the change in density of the 
carrier gas in GC caused by the pressure drop from 
the inlet to the outlet. With small-diameter capillary 
columns, the column inlet pressure can be many 
times the column outlet pressure. This pressure drop 
has an impact on chromatographic performance in 
terms of both speed and efficiency. 

Non-uniformity of other conditions along the 
column can also affect chromatographic perfor- 
mance. Variations in column cross-sectional area, 
stationary phase film thickness and composition, 
mobile phase composition, etc., are further exam- 
ples in GC. Other techniques such as liquid (LC) and 
supercritical fluid chromatography (SFC) and 
others are also affected by non-uniform conditions. 

0021-9673/92/%05.00 0 1992 Elsevier Science Publishers B.V. All rights reserved 



2 L. M. BLUMBERG, T. A. BERGER 

Thus, non-uniform conditions are widely encoun- 
tered in chromatography. 

Analysis of a non-uniform chromatographic me- 
dium becomes significantly more complex when 
non-uniformity of a medium is combined with a 
sample overloading, a cause of nonlinear effects, 
and/or with time variance of a medium such as in the 
case of temperature programming in GC or pro- 
gramming of solvent composition in LC and SFC. 
The scope of this paper is limited to analysis of a 
linear time-invariant (constant in time) medium. 

In analytical chromatography, whenever possi- 
ble, non-linearity is avoided by measures such as 
injection of a substantially small amount of a 
sample. Time variance, on the other hand, is an 
important component of many analytical techn- 
iques. The theory of non-uniformity Icombined with 
time variance is a subject of the next paper in this 
series. 

The most widely used approach to the theoretical 
analysis of chromatography in a non-uniform time- 
invariant linear medium was outlined by Golay [I] in 
1958. Specific results accounting fod the compress- 
ibility of an ideal carrier gas in GC were published by 
Giddings and co-workers [2,3] in 1959-60. A more 
general treatment published by Gidd/ings a few years 
later [4-61 is widely considered as the basis for the 
analysis of all types of non-uniformity in a chroma- 
tographic medium. 

Unfortunately, these known theories have short- 
comings. As the starting point, results are derived 
for a uniform medium, and corrections are applied 
to accommodate non-uniformity in further deriva- 
tions. Hence the derivations rely on the implicit 
assumption of uniformity of chronwitographic con- 
ditions within a zone of a migrating analyte. 

For example, Golay suggested that non-uniform- 
ity should be treated in the following way. He wrote 
(ref. 1, p. 43) that the conclusions in that referencea 
“are applicable to columns of uniform cross-sec- 
tions in which the input to exit pressure ratio is near 
unity. When there is a succession of varying cross- 
sections . . . , we should replace theisecond moment 
[of density] u by the volumetric second moment U, 
the incremental value of which is: di/ = S2du, where 

a All notations in this paragraph are the same as in the source [l] 
and are limited to this paragraph only. 

S represents the cross-section area of the column at 
the point considered”. In a similar manner, Golay 
considers corrections for pressure drop and for 
combination of both types of non-uniformity. Sub- 
stantial in that discussion are two factors: (a) the 
starting point of du (incremental variance of the 
zone) which was previously derived for uniform 
conditions, and (b) the correction by multiplying du 
by quantities such as S2 at the point considered. If 
conditions within a zone of a non-zero width are 
substantially non-uniform it becomes unclear which 
is “the point considered”, and the correction of an 
incremental variance by a single parameter (in this 
case S) becomes generally inappropriate. 

Similarly, analysis developed by Giddings [5] 
starts by dividing a column into equal small seg- 
ments. It was then assumed that the local conditions 
within each segment approach uniformity, and are 
represented with any required precision when the 
number of segments becomes sufficiently large. This 
is a common mathematical technique. However, in 
derivations for non-uniform chromatography, the 
size of a segment could not be meaningfully reduced 
below the width of a zone of analyte in the vicinity of 
a given location. Therefore, the logic fails if condi- 
tions remain substantially non-uniform within the 
zone. Therefore, for such derivations, the requireme 
nt of uniformity of conditions within a zone of a 
non-zero width is implicitly a de facto limitation 
even if not explicitly stated. Obviously, if time- 
invariant conditions are uniform within a zone at 
any position in a column, the entire column must be 
uniform, and analysis of non-uniformity becomes 
irrelevant. The analysis can and must be expected to 
yield practically accurate and reliable predictions if 
conditions within a zone are almost uniform. It must 
be recognized, however, that the predictions based 
on such an assumption are approximate. 

For example, utilizing the aforementioned meth- 
odology, Stewart et al. [2] in 1959 and Golay [7] in 
1963 arrived at the same value for what is now well 
known as Giddings’ correction factor for the plate 
height in a compressible ideal carrier gas in GC [2]. 
Although in GC conditions as functions of coordi- 
nates typically do not change rapidly, nevertheless, 
they are not constant within the zone [l]. Therefore, 
it must be recognized that even in an ideal case, 
Giddings’ correction factor is only an approxima- 
tion to the still unknown correct value. 
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Further, when a theory is based on the assump- 
tion of near uniformity of chromatographic condi- 
tions within a zone while actual conditions are 
substantially non-uniform, as can be the case in SFC 
[8], predictions of the theory become unreliable. 

Hence non-uniform conditions are only super- 
ficially dealt with in chromatographic theory. 

The purpose of this paper was to develop a general 
theory of chromatography in a non-uniform time- 
invariant linear medium. The topic of the paper was 
a study of evolution of variance of a zone of analyte 
migrating in the medium. 

The model 
It is important to base a general study of the 

process of a chromatographic separation in a non- 
uniform medium on a model which reduces all 
specifics of the process to a minimum set of indepen- 
dent factors. 

Giddings [6] treated the process of a velocity- 
based chromatographic separation in a uniform col- 
umn as a one-dimensional phenomenon described 
by the mass-balance equation of convective diffu- 
sion [6,9]: 

-_=D ?!?_,, d” dm 

at . ax2 ’ ax 
(1) 

where all quantities m, D and v are cross-sectional 
averages, m is the amount of analyte per unit of 
column length, which will be referred to as the 
specific mass of analyte, D is the effective diffusivity 
(in brief, diffusivity) of analyte in the column, 
representing the cross-sectional average of all fac- 
tors causing dispersion [lo] of a zone, such as 
molecular diffusivity in the mobile phase and resist- 
ance to mass transfer, and v is the velocity of 
migration of analyte which could be described 
through a cross-sectional averaged velocity of the 
mobile phase, v,, and a capacity factor of the 
analyte, k, as 

v = v,/(l + k) (2) 

A chromatographic theory based on a mass-bal- 
ance equation such as eqn. 1 provides a high level of 
generality, as it allows reduction of all the specifics 
of a chromatographic process (such as the thermo- 
dynamics of all internal interactions in a medium 
and statistics of migration of a sample [6,11,12] 
affected by such interactions) to only two param- 

eters: the dispersivity and the velocity of migration 
of the sample in the medium. 

Eqn. 1 and similar equations [13] are widely used 
for studies of chromatography in uniform media. In 
a non-uniform medium, both the velocity of the 
analyte and its dispersion at each specific location 
are functions of the coordinate of the location. 
Unfortunately, to adapt eqn. 1 and similar equa- 
tions to a non-uniform medium, it is not enough 
simply to assume that both parameters, D and v, are 
functions of x. With that assumption, eqn. 1 is not 
mass conservative, i.e., it does not represent the 
balance of mass in a non-uniform medium. 

A more general equation of convective diffusion 
in a one-dimensional medium is 

(3) 

This equation is mass conservative even when D 
and v are functions of x and t (see Appendix). Eqn. 3 
represents a one-dimensional version of a more 
general mass-conservative three-dimensional con- 
vective diffusion equation [9]: 

- = div (D, grad p) - div (pv) at 

where p is the density of the migrating entity, D, is 
its molecular diffusivity and v is a vector of velocity 
in the medium. 

In eqn. 3, all coordinate-dependent properties of a 
non-uniform medium such as a variation in column 
diameter, thickness and composition of stationary 
phase are represented by the two functions of the 
coordinate, D and v. Obviously, when a medium is 
uniform, i.e., aqax = aqax = 0 for any x, eqn. 3 
could be rewritten as eqn. 1. 

In this paper, eqn. 3 is the basic model for 
chromatography in a non-uniform medium. 

Limitations within the model 
The assumptions limiting the scope of the model 

in this paper can be summarized as follows. 

Cl. The medium is time invariant and linear, i.e., 
the quantities D = D(x) and v = v(x) depend 
only on x. 

Assumption of linearity (no dependence of D and 
v on m) allows one, among other simplifications, to 
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deal individually with each component of a complex 
mixture. Thus, only migration of a single-compo- 
nent analyte is studied. The assumption of time 
invariance (no dependence of D and v on t) avoids 
complications caused by interaction af variation of 
chromatographic conditions in space with their 
variation in time. 

It is also assumed that the quantities D and v are 
finite within any bounded interval of the x-axis, and 
D is not negative. Further, derivatives &/ax and 
cYD/c?x are limited when x approaches infinity. More 
accurately: 

C2. 0 d D < 00 and Iv] < co when 1x1 < co; 
(&/&j < coandjaD/dxI < cowhenx-+ &co. 

As for a zone of analyte, it is assumed that its 
second moment is always limited (limited width of 
the zone). That, together with the recognition of the 
fact that the specific mass, m = m(x,t), of the zone 
is a non-negative function, could be formally ex- 
pressed as: 

m 
C3. j x2mdx < 00; 

1 I 
mB0 (5) 

--m 

It is apparent that only condition Cl provides a 
significant limitation to the scope of the theory. The 
other two sets of conditions, C2 and C3, are almost 
unrestrictive. 

The last two conditions could be combined for 
further use as follows. Inequalities 5 imply: 

am 
x3m-+Oandx4.-+Owhenx+ +co 

ax (6) 

Combination of these relationships and condi- 
tions C2 provides 

am 
xDm + 0, x2vm -+ 0, x2D . - -+ 0 and 

a.lt 
aD 

x2m . z +Owhen x+ +cc (7) 

Moments and other relevant relatiovzships 
As stated earlier, the purpose of dhis paper was to 

account for variations in D and v down the column, 
in calculations of the variance. 

cr2 = 4 (x - z)2mdx 
-CC 

(8) 

of specific mass in a zone, the second central 
moment of m. The variance is mathematically the 
most convenient representation of the width of a 
zone. 

In eqn. 8, the quantity 
m 

z = 1 xmdx 
-a0 

(9) 

is the first moment of m which represents a coordi- 
nate of the center of mass of the zone. Both eqns. 8 
and 9 assume that m is normalized so that the zone 
has a unity mass, i.e., 

y mdx = 1 
-Kl 

(10) 

Such normalization is possible owing to the 
mass-conservative nature of the model. It is also 
useful to note that eqn. 9 implies 

7 (x - z)mdx = 0 (11) 
-CC 

Several other relationships from the theory of 
chromatography in a uniform medium are relevant 
to further discussions. 

Giddings [6] has shown that the diffusivity, D, in 
eqn. 1 could be expressed via the column plate 
height, H, as 

D = Hv/2 (12) 

Relationships between a column plate height and 
other column parameters are known from the 
literature [1,6,14,15]. 

From another perspective, Golay’s [l] expressions 

da2/dx = H (13) 

and 

da2/dt = Hv (14) 

allow interpretation of H in eqn. 13 as a spatial rate 
of dispersion of a zone while the quantity Hv in 
eqn. 14 and, therefore, the diffusivity, D, in eqn. 12 
could be interpreted as a representative of the zone’s 
temporal dispersion rate. 

It is also interesting that eqn. 14 is a generalization 
of Einstein’s [16,17] expression c2 = 2Dt for 
Brownian motion in a stationary (v = 0) medium. In 
the differential form, the latter can be rewritten as 

da2/dt = 20 (15) 
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which, together with eqn. 14, serves as another 
justification for eqn. 12. 

Expressions 13-l 5 represent spatial and temporal 
rates of growth of a2 in uniform media. Similar 
equations for the evolution of a2 in a non-uniform 
medium are derived from eqn. 3 in the next section. 

THEORY 

Aggregate veIocity of migration of a zone 
As mentioned earlier, the subject of this paper is 

the derivation of the spatial and temporal rates of 
change of a2 in a non-uniform medium. 

If the location of a zone in space is represented by 
its center of mass, z, then the spatial rate of changes 
of 0’ is da2/dz and the temporal rate is da2/dt. The 
two relate as 

da2 dt da2 1 da’ _=_.---_-.- 
dz dz dt u, dt (16) 

where 

u, = dz/dt (17) 

is a temporal rate of displacement of the center of 
mass of the zone. This quantity can be viewed as an 
aggregate velocity of migration of the entire zone. In 
a non-uniform medium, u, could be different from 
local velocities of elements of the zone. 

It can be shown (see Appendix) that 

u,= 7 
( > 

v + g mdx = 7 umdx (18) 
-CC --m 

where 

24 = u(x) = v + g (19) 

The integral on the right-hand side of eqn. 18 
represents the momentum of a zone and indicates 
that it is the quantity u (not v) which represents the 
net local velocity of migration of analyte in the 
medium. According to eqn. 19, the net velocity, u, 
consists of two components. Component aD/ax 
represents the migration velocity caused by a gra- 
dient of diffusivity and exists onIy in a non-uniform 
medium. The other component, v, is the convective 
velocity of the analyte defined for a uniform medium 
as in eqn. 2 [ 1,6]. In a non-uniform medium, both v, 
and kin eqn. 2 defining v could be functions of x, i.e., 
v, = v,(x), k = k(x). 

Rearranged equation of convective diffusion 
Using the notation in eqn. 19, eqn. 3 can be 

rewritten (see Appendix) in the form 

am a2 -_= 
at dx2 Pm> - & Cum) 

which is more convenient for analysis of evolution of 
variance of a zone (see below). Eqn. 20 is similar to 
what is known in physics as the Fokker-Planck 
equation [18]. Further developments are based on 
eqn. 20. 

Evolution of variance of a zone 
The temporal rate of change of variance of a zone, 

da2/dt, could be expressed (see Appendix) as 

da2 
- = 2 7 Dmdx + 2 7 (x - z)umdx 
dt -co 

(21) 
-CO 

and can be viewed as a generalization of Einstein’s 
eqn. 15 applied to a convective dispersion in a one- 
dimensional non-uniform medium. Substitution of 
eqn. 21 in eqn. 16 yields an expression for the spatial 
rate of change of a’: 

da2 2 m -=_ l Dmdx + i -7 (x - z)umdx 
dz u, -m 

(22) 
a m 

which can be further rewritten as 

-=_ (x - z)umdx (23) 

where similarly to eqn. 12, 

H = H(x) = 2D/u (24) 

Eqn. 23 can be viewed as a generalization of 
Golay’s eqn. 13 for non-uniform media with the 
quantity H playing the role of the local plate height. 
Further discussion of this topic is postponed until 
the next section. 

Typically in chromatography, the column length 
rather than the retention time of an analyte is known 
a priori. This makes the spatial rate, da2/dz, more 
convenient than the temporal rate, da2/dt, for 
calculation of the variance of a zone at the column 
outlet. Therefore, greater attention in further develo 
pments is given to the former. 

Approximation of the spatial rate of zone variance 
Eqns. 2 l-23 describe the evolution of variance of 
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a zone migrating in a one-dimensional linear time- 
invariant non-uniform medium under practically 
unrestrictive conditions (C2 and C3). The condition 
s allow even for a random non-uniformity where the 
velocity, u, and diffusivity, D, of the analyte can 
change so rapidly that the gradients, 1%/8x and 
do/ax, can change signs several times within the 
zone. 

Chromatographically, this might include varia- 
tions in conditions such as a completely random 
variation in the column inside diameter, stationary 
phase film thickness or particle size of a packing 
material in a column. 

Typically in chromatography, zones of analytes 
are so narrow relative to the column length that 

C4. gradients, av/dx and dD/d.x, are nearly constant 
within a zone. 

It is important to emphasize that these conditions 
require no limit on the degree of change of u or D 
within the zone, or along the entire column. The 
conditions only limit the degree of the change of 
gradients of those quantities within ithe zone. How- 
ever, even the gradients are allowed to have large 
changes along the entire column. Examples include 
locally nearly constant density gradients in GC and 
SFC. 

Except for special cases, eqns. 21.-23 are difficult 
to solve. However, under condition C4, they could 
be replaced by simplified approximations. Thus, if 
condition C4 is valid with a required precision, 
eqn. 23 can be reduced to the ordinary differential 
equation (see Appendix) for o2 = a”(z): 

(02)1 = H + 20’ * f or (02)’ = H +. o2 . @$ (25) 

where the prime serves as an abbreviation for a 
derivative by z. Obviously, for mediu with a uniform 
velocity (u’ = 0), this equation becomes Golay’s 
eqn. 13. 

To solve eqn. 25, one may introuluce a quantity 

72 = 02/u” (26) 

which represents a measure of variance of a zone in 
time units. Eqn. 25 could be rearranged as 

(TV)’ = (02/u2)’ = H/u2 (27) 

and 

CT2 
22 = - 

~~(0) = H 

u2 =U2(0)+&2.dx (28) 

where o*(O) and ~~(0) are, respectively, the variance 
and the velocity of the zone at the beginning of its 
path (column inlet). 

If ~~(0) = 0, then 

r2 = a$. dx and g2 = u2 [ 9. dx (29) 

Further, under typical chromatographic condi- 
tions, 

In that case, owing to eqn. 19, eqns. 27 and 29 
could be reduced respectively to 

(r2)’ = (02/v2)’ = H/v2 (30) 

and 

r2 = % 5. dx and o2 = v2 [ $0 dx (31) 

Eqn. 30 reflects Golay’s [ 1] approach to account- 
ing for non-uniformity in a medium. Also, eqns. 30 
and 31 reflect Giddings’ idea [4,6] of additivity of 
local dr2 values in their contribution to the total t2 
value of a zone of analyte at any location along its 
path. This discussion continues in the next section. 

Finally, for a uniform medium, the latter expres- 
sions yield 

a2 = Hz (32) 

which, after substitution of eqn. 24 and z = ut, takes 
the form of Einstein’s relationship g2 = 2Dt. 

DISCUSSION 

Local and aggregate plate height and dlffusivity 
Earlier, a quantity H (eqn. 24) was introduced. 

Comparison of eqn. 24 with Giddings’ eqn. 12 shows 
that in uniform media, the quantity H in eqn. 24 
defines a chromatographic plate height. A similar 
conclusion follows from comparison of eqns. 14 and 
15. 

To interpret the quantity H in a non-uniform 
medium, consider eqn. 23 and an extremely narrow 
zone with a center of mass z. When the variance of 
the zone approaches zero, its specific mass, m, as a 
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function of x approaches Dirac’s delta-function 
6(x - z). The latter conclusion comes from an 
examination of eqn. 8. When m converges to the 
delta-function, the first term in eqn. 23 converges to 
H and the second term vanishes. Thus, the entire 
expression converges to da2/dz = H(z), which is 
similar to Golay’s eqn. 13 and indicates that in a 
non-uniform medium, the quantity His a local plate 
height. A similar conclusion could be derived from 
assuming rs2 = 0 in eqn. 25. 

The concept of a local plate height helps in further 
interpretation of the first term on the right-hand side 
of eqn. 23. Note first that the quantity 

fu = fu(W) = um (33) 

represents a local mass flow (in brief, a flow) due to 
migration of analyte’. The zeroth moment, M,, offu 
is the same as an aggregate velocity of the zone. 
Indeed, from eqns. 33 and 18: 

m m 
M,, = J fudx = J umdx = u, (34) 

-a -m 

Eqns. 33 and 34 allow the first term on the 
right-hand side of eqn. 23 to be rewritten as 

H, = H,(z) = i -7 Humdx = $ -7 HfUdx (35) 
a m 0 m 

indicating that Ha is a flow-weighted average plate 
height, and could be referred to as an aggregate plate 
height of the zone. Unlike a local plate height, the 
aggregate plate height is no longer a property of the 
medium alone, but also depends on spatial distribu- 
tion of the flow of analyte. Of course, if the plate 
height is uniform (H is constant), eqn. 35 becomes 
Ha = H. In other words, if the local plate height in a 
medium is uniform, its aggregate plate height is 
everywhere the same as the local plate height. 

The first term on the right-hand side of eqn. 21 
could be interpreted in a similar manner. Indeed, a 
quantity 

D, = D,(z) = 7 Dmdx (36) 
-4, 

could be introduced which is a specific-mass- 
weighted average of the diffusivity, and can be 

’ This does not include a component, -a/ax (Dm), of a local 
mass flow due to the zone dispersion in the medium. 

referred to as an aggregate diffusivity of a zone (a 
combined property of a medium and a zone). 

Comparison of the first terms on the right-hand 
side of eqns. 22 and 23 with notations 35 and 36 
suggests that 

Ha = 2D,/u, (37) 

a relationship similar to that in eqn. 24 for local 
quantities. 

Further, in a uniform chromatographic medium, 
a plate height is a spatial rate of growth of variance 
of a zone (eqn. 13) while the quantity 20 can be 
interpreted as a temporal rate of growth of variance 
of the zone (eqn. 15). In a non-uniform medium, the 
analogy remains. A local plate height and a local 
diffusivity represent, respectively, a local spatial rate 
and half of a local temporal rate of growth of 
variance of a zone. Similarly, an aggregate plate 
height and an aggregate diffusivity represent, re- 
spectively, an aggregate spatial rate and half of an 
aggregate temporal rate of growth of variance of a 
zone. 

In spite of many similarities between the aggre- 
gate plate height and diffusivity, there is an impor- 
tant difference. A specific mass, m, and a migration 
flow, fu, of an analyte could be viewed as static and 
dynamic distributions of a zone, respectively. There- 
fore, an aggregate diffusivity, being a specitic-mass- 
weighted average (eqn. 36), can be viewed as a static 
average of a local diffusivity. The aggregate plate 
height, on the other hand, is a flow-weighted average 
(eqn. 35), and can be viewed as a dynamic average of 
local plate height. 

This discussion could be summarized as follows. 
It is an accepted practice in the chromatographic 
literature to view a zone migrating in a non-uniform 
medium as a lump entity subjected to dispersion 
with a single spatial dispersion rate equal to a local 
plate height, H, at the center of mass of the zone. 
This is a convenient logical concept. However, as the 
previous discussion suggests, that single spatial 
dispersion rate is an aggregate plate height, Ha, 
which is also a function of the coordinate of the 
center of mass of the zone but might be different 
from the local plate height there. Similar conclusions 
are valid for local and aggregate diffusivities in a 
non-uniform medium. 
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Gradient of diffusivity 
All the results discussed so far were derived from 

eqn. 20, which along with notation 15’ indicates that 
the gradient, dD/dx, of the diffusivity behaves as a 
component of velocity of an analyte. This was not 
previously known in the chromatographic literature. 

The appearance of the quantity aDi/dx as a part of 
velocity indicates that a positive aD/&x increases and 
a negative dD/dx reduces the velocitiy of analyte. 

Recognition of the fact that the gradient of 
diffusivity behaves as a component of velocity 
helped significantly in deriving eqns. 21-23 and in 
understanding the mechanisms of ievolution of a 
zone in a non-uniform medium. 

Comparison with known results 
As was mentioned earlier, eqn. 30 reflects Golay’s 

[l] approach to accounting for non-Iuniformity in a 
medium. Golay recommended a similar approach as 
a corrective measure against such sources of non- 
uniformity as pressure drop in GC with an ideal 
carrier gas, non-uniformity of column diameter and 
combinations of both. Here, eqn. 30 has been 
derived for a combination of any non-uniformities. 

It was also mentioned before thateqns. 30 and 3 1 
reflect Giddings’ heuristic assumption [4,6] of addi- 
tivity of local dz2 values in their contribution to the 
total r2 value of a zone of analyte at any location 
along its path. 

It must be noted, however, that the treatment of 
non-uniformity in the aforementioned references 
relies on the implicit assumption &at all chroma- 
tographic conditions within the a.one are nearly 
uniform. A more detailed discussion was presented 
in the Introduction. 

Here, eqns. 21-23 for evolution ,of variance of a 
zone have been derived under na limits to non- 
uniformity in a medium. 

A simplified version (eqn. 25) and its moditica- 
tions (eqns. 27,28 and 29) do impo[;e some limits to 
non-uniformity, namely both gradients, &/ax and 
aD/dx, must be nearly constant within the zone. 
Still, no limits to the rate or degree of change of D 
and/or v is required. In short, eqn. 25 can be applied 
to a wider class of non-uniform media and allow 
more relaxed conditions than previous treatments of 
non-uniformity. 

For typical chromatographic conditions, eqn. 25 
can be further reduced to eqns. 30 and 31. Special 

cases of these equations are known from the litera- 
ture [1,4,6]. However, again, in this paper, eqns. 30 
and 31 are shown to be applicable to a wider class of 
non-uniform media and allow more relaxed condi- 
tions than previous treatments. 

APPLICATION OF THE THEORY 

Erosion of chromatographic efficiency 
It can be argued that a positive gradient of 

velocity of a zone can reduce efficiency as it causes 
extra expansion of the zone. Alternatively, when a 
zone of analyte suffers significant deceleration it 
contracts. It can be argued, therefore, that creating a 
negative gradient of velocity in a column can 
improve chromatographic efficiency. Such state- 
ments are examined in this section. 

To simplify mathematical expressions in this 
section, a quantity 

f#J = b(x) = l/u (38) 

is introduced where 4 is measured in units of time 
per unit length and could be interpreted as a spatial 
rate of delay, or delay rate of an analyte: the greater 
the delay rate at some coordinate of a medium, the 
longer the analyte remains in the vicinity of that 
coordinate. Utilizing the delay rate, the retention 
time, t,, at x = L could be expressed as 

t, = 5 $dx 
0 

(39) 

A chromatographic efficiency, N, is defined as 
N = t;?/z2(L) with a2(0) = 0. Substituting here 
eqns. 29 and 39, and taking into account nota- 
tion 38, one has 

(40) 

A similar expression for apparent plate height was 
derived earlier by Giddings [4]. Introducing nota- 
tions 

Nz=[$ (41) 
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one has 

N = Nz,/~’ (42) 

The quantity l/H in the integrals in eqn. 41 
represents a local specific efficiency (efficiency per 
unit length at a given location) of a medium (a 
column). Therefore, the quantity Nx in eqn. 41 is the 
sum of all local efficiencies and can be referred to as 
a cumulative efficiency of a non-uniform medium (a 
column). If the velocity of a zone was uniform, and 
only the column plate height was not uniform, the 
efficiency of the column would have been Nr. 

For the quantity s2, it can be shown (see Appen- 
dix) that 

Ez > 1 (43) 

Thus, from eqn. 42, the chromatographic efli- 
ciency of a non-uniform medium cannot exceed its 
cumulative efficiency (standing gradients cannot 
improve efficiency). Giddings [4] came to the same 
conclusion for the special case when only the 
velocity of the analyte could vary along a column 
while the local plate height remained the same 
everywhere. The derivation of inequality 43 em- 
ployed here did not require such a limitation. 

Quantities s2 and E represent, respectively, the 
degree of erosion of efficiency and resolution due to 
non-uniformity within a medium and can be referred 
to as erosion factors of those quantities. 

Re-examination of the introductory statements of 
this section provide further interpretation of the 
erosion factor. 

Note first that eqn. 42 gives the same result 
whether the velocity of analyte (inverse of the delay 
rate) increases or decreases down its path. This 
means that both types of non-uniformity are equally 
damaging to efficiency. 

Indeed, when a zone of analyte accelerates down 
its path owing to the positive velocity gradient and 
broadens, the loss from the zone expansion is 
partially compensated for by the accompanying gain 
from faster migration of the zone. The compensa- 
tion, however, is not large enough to prevent a net 
erosion of efficiency. GC represents a typical exam- 
ple of a medium with positive velocity gradients. 
Similarly, when a zone decelerates down its path due 
to the negative velocity gradient and narrows, the 
gain from the zone contraction is smaller than the 
accompanying loss from the zone’s slower migra- 

tion. The net result is erosion of efficiency. SFC 
represents a typical example of a medium with the 
negative velocity gradients [19]. In either case, the 
net result of non-uniformity is erosion of efficiency 
and resolution. 

Still, there is one favorable aspect from this net 
unfavorable outcome. As the erosion is a result of 
two competing effects (such as the gain from a zone 
contraction and the loss from its deceleration), a 
large degree of the erosion (E s=- 1) could be 
considered as an exception rather than the rule. This 
observation is confirmed by experimental data [20]. 

Consider now a medium where the plate height is 
uniform (H is constant) but the delay rate varies 
down the column. Examples include cases with a 
large pressure drop in GC and SFC where local plate 
height changes not nearly as much as a local velocity 
of an analyte. In these media, the cumulative 
efficiency (eqn. 41) has a more familiar form: 

Nx = L/H 

and the eqn. 42 can be reduced to 

(44) 

L 5 42dx 
s2= O 

L- 1 ‘j A42dx 

( > 
i$dx 2 

=1+ O 
4:” 

(45) 

where (Fig. 1) 4.” = L-’ i 4dx is a column length 

averaged delay rate and i$ = 4 - 4,” is a local 
variation of the delay rate (a deviation of a delay rate 
from its average). Obviously, Aqb has a zero average. 
The numerator on the right-hand side of eqn. 45 
represents an average “energy” of the variation in 
delay rate. Therefore, the erosion factor, Ed, deviates 
from unity by the ratio of the average “energy” of 
variation of the delay rate to the square of the 
average delay rate. The above “energy” is always 
positive as long as the delay rate is not uniform. 
Therefore, when the delay rate is not uniform the 
erosion factor is always larger than unity. On the 
other hand, drastic non-monotonic variations of 
delay rate down the path might be required in order 
to cause a significant difference between the “ener- 
gy” and the square of the area under the function 
4(x). Therefore, monotonic changes in the velocity 
of the analyte along the column (even orders of 
magnitude changes) might cause only a slight ero- 
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Fig. 1. Non-uniform delay rate. The shaded area represents the variation, d4, of the delay rate, 4, relative to its average, 4,“. In the case of 
a uniform plate height, the decrease in chromal.ographic efficiency due to the non-uniformity of the delay rate is proportional to the ratio 
of the aveiage “enkgy” of b$ to 4:” 

sion of efficiency. This interpretation helps to ex- 
plain the experimental SFC data [Z!O] where even 
large deceleration of analytes caused only the small 
erosion of efficiency. 

An example of a weak influence of a zone 
acceleration on efficiency is GC with compressible 
carrier gas. It has been shown by Sewart et al. [2] 
and it directly follows from eqn. 45 that for non- 
retained peaks in GC using an ideal carrier gas 

s2 _ 9(P4 - l)@* - 1) - 
8(p3 - 1>* 

wherep is the inlet-to-outlet pressure ratio across the 
column. It also represents an outlet-to-inlet velocity 
ratio of the analyte. From eqn. 46, it follows that 
even for large ratios of outlet-to-inlet velocity, the 
erosion of column efficiency could not exceed 12.5%. 

It must be pointed out, however, that eqn. 46 is 
based on the approximate eqn. 25 (conditions C4). 
Therefore, eqn. 46 cannot be viewed as the exact 
expression for the erosion of efficiency in GC with an 
ideal carrier gas; it is only the first approximation of 
that quantity. This important theoretical fact has 
not been recognized before. 

CONCLUSIONS 

A general model (eqn. 3) for chromatography 
based on convective diffusion has been proposed. 
The model can be applied to a chromatographic 
medium which can be non-uniform, time-varying 
and non-linear, or have any combination of these 
properties. Such a model has not previously been 
found in the chromatographic literature. 

In this paper, the model was utilized for the 
analysis of non-uniform time-invariant linear me- 
dia. The main subject of this paper was the deriva- 
tion of variance of a zone of analyte migrating in 

such a medium. Results of the derivation are 
applicable to any type of non-uniformity regardless 
of its cause, be it variation in the density of an ideal 
or non-ideal carrier gas, in the column diameter, in 
the thickness or in the composition of the stationary 
phase, etc. 

It has been found that a special form of the model 
known as the Fokker-Planck equation is the most 
convenient for moment analysis in such a medium, 
and can be used in other moment-based studies of 
chromatography. The Fokker-Planck equation has 
not previously been utilized in the chromatographic 
literature. 

Exact eqns. 21,22 and 23 for temporal and spatial 
derivatives of variance of a zone have been derived. 
These are the first exact expressions for the general 
case of non-uniformity. 

The expressions could be further reduced to a 
first-order ordinary linear differential equation 
(eqn. 25) if gradients of diffusivity and velocity in the 
medium are locally nearly constant (changes can be 
large but nearly linear). Such a general equation for 
a zone variance in a non-uniform medium was not 
known before. Further, the conditions under which 
eqn. 25 was valid are less restrictive than those 
known from the literature. Previous implicit or 
explicit conditions were more restrictive yet were 
developed for narrower cases. 

It has been shown that regardless of the type of 
non-uniformity, chromatographic efficiency cannot 
be improved. This statement is more general than a 
similar statement published before. On the other 
hand, a simple graphical concept based on the newly 
introduced delay rate in a non-uniform medium has 
been developed to demonstrate that in many in- 
stances even significant non-uniformity can cause 
only minor decreases in efficiency. Roughly, it is 
impossible to gain extra efficiency via non-uni- 
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formity, but significant losses are unlikely unless the 
medium becomes very lumpy. 

It has also been shown that in a non-uniform 
medium, a gradient of diffusivity affects the local 
velocity of migration of the analyte. Although for 
typical chromatographic conditions the addition is 
virtually insignificant, recognition of the fact is 
theoretically important. References to the phenom- 
enon have not been found in the literature. Several 
new parameters of a non-uniform chromatographic 
medium were also introduced. 

SYMBOLS 

D local effective diffusivity in a medium 
(length’ltime) 

D, aggregate diffusivity of a zone of analyte 
(length’/time) 

: 
molecular diffusivity (length’ltime) 
local mass flow due to migration of analyte 
(mass/time) 

H local plate height (length) 

H, aggregate plate height of a zone of analyte 
(length) 

k capacity factor 

APPENDIX 

L 
m 

NZ 
N 

P 
t 

t, 
U 

U, 

V 

V, 

x 

2 

E 

i” 

A4 

P 

P2 

T2 

length of a path of a zone (length) 
specific mass of a migrating analyte (mass/ 
length) 
cumulative chromatographic efficiency 
chromatographic efficiency 
ratio of inlet to outlet pressure on a column 
time (time) 
retention time of a zone (time) 
net local velocity of an analyte (length/time) 
aggregate velocity of a zone (length/time) 
local convective velocity of analyte 
(length/time) 
local velocity of a mobile phase (length/time) 
spatial coordinate (length) 
center of mass (first moment) of a zone 
(length) 
erosion factor 
delay rate of an analyte (time/length) 
average delay rate of an analyte (time/length) 
variation of delay rate (time/length) 
density (mass/length3) 
variance (second central moment) of a zone 
(length2) 
time measure of variance of a zone (r2 = 
a2/u”) (time2) 

Mass balance of convective diffusion in a non-uniform medium 

The total mass of a zone migrating in a unbounded medium could be expressed as 7 mdx. Its derivative 

$ -7 mdx reflects the variation of the total mass with time, and must be zero if theatotal mass is to be 

conszrved. Taking account of eqn. 3, one has 

The last transaction to zero becomes valid under the following practically unrestrictive assumptions 
(see C2 and C3 in the main text): m + 0, )aD/axI < co and Jv( < cc when x + fco. 

Derivation of aggregate velocity, dzldt, of a zone 
Taking account of eqns. 17, 9 and 3, then integrating by parts one has 

dz d” ma 4r 
u, = z = - f xmdx = j - (xm)dx = j 

dt-, _,at 
__x.$dx =_y;[-$-lI.$$ - &(vm)]dx = 

~xd(D*~-vm)=xD.$ff-~D.~dx-xvm[+-~vmdx=~vmdx-jD.~.dx 
--m -CO -CO -C0 -C0 

-U3 -m 
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m 

The last transaction here was based on the properties 7 securing xD(am/ax) 
i I 

= 0, xvm = 0. When 

properties 7 are accounted for again, integration by parts for the second integral% the last right-hand side 
yields 

m 
00 

u, = f vmdx - Dm + _TmfTt . mdx = 7 vmdx + 7 g 1 mdx = 7 
-UZ -00 _,dx -m 

-m 

Modification of the equation for convective diffusion 
Eqn. 3 can be modified in the following way. After adding a quantity m(aD/ax) within both derivatives of its 

right-hand side, one has 

am a -=- 
at ax D.g-+rn.g = $ (Dm) - -I$ 

[(v+ E)m] 

After introduction of a variable or’ by eqn. 19, the last equation becomes 

am a2 -_= 
at 

s VW - $ Cum) 

Derivation of do’/dt 
This derivation is based on the madified equation of convective diffusion derived above. Starting with eqn. 

8, and repeating integration by parts similar to that employed for derivation of dz/dt above, one has 

da2 d m - = -& (x - z)‘mdx = -- 7 2:$x - z) . $ . mdx + 9 (x - z)” . $ . dx = -224,~ 7 (X - z)mdx + 
dt 

7 (x - z): (-$ (Dm) - i: (il)‘) 

-a, -CO 

dx = -224,~ 7 (x - z)mdx + 7 (x - z)‘d 
-m -a, --oo 

& (Dm) - um 

Owing to eqn. 11, the first integral in the last sum vanishes. Integrating the second integral by parts, one 
further has 

g = (x - z)’ (L (Dp) - urn) 1 - 2 7 (x - z)($ (Dm) - urn) dx 
-CC 

Eqns. 7 nullify the value of (x - a,)’ L (Dm) - vm 
>I 

. Integrating the remaining integral by parts again, 

one further has 
-cc 

cc 
do2 

-27 (x-z) 
dl= _m 

k(Dm)- urn 
> 

dx = -2 7 (x - z)d(Dm) + 2 7 (x - z)umdx = -2(x - z)Dm f 
-m -03 

2 7 Dmdx + 2 7 (x - z)umdx 
--m -m 
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With the first member of the last right-hand side nullified by eqns. 7 again, the entire expression finally 
becomes 

da2 
- = 2 7 Dmdx 
dt -m 

+ 2 7 (x - z)umdx 
-03 

Derivation of ordinary differential equation for a2 
At any x-coordinate of a medium, both u and D could be expressed via their linear terms and the 

second-order remainders as: 

U = u(z) + U’(Z)(X - z) + 0,; 0” = O”(X,Z) 

D = D(z) + D’(z)(x - z) + O,,; O,, = O,,(x,z) 

If both the second-order remainders, 0, and On, in these expressions are substantially small within a zone 
of analyte, then the above expressions could be replaced with their respective linear approximations: 

U = U(Z) + U’(Z)(X - z) (48) 

D = D(z) + D’(z)(x - z) (49) 

Owing to eqns. 48 and 11, the aggregate velocity from eqn. 18 becomes 

r.& = U(Z) (50) 

Finally, recalling eqns. 11, 8 and 24 and substituting eqns. 48, 49 and 50 into eqn. 22, one has 

da2 
- = H(z) + g. $ 
dz 

Lower bound for the erosion factor 
As H is positive, new functions 

could be introduced to rewrite eqn. 41 as 

E2 _ (dH42dx)ig = ([fdx)ig2dx 

- (kwxr (ifgdx) 

According to the Cauchy-Schwarz inequality 

E2 > 1. 
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